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OpenAI: Dactyl

Uber car accident

Softbank robotics / RobotLAB: Pepper

OpenAI: Reward Hacking

Tesla: self-driving car

NY Times: Boeing 737
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How to provide safety guarantees for uncertain systems?

How to loop humans in to better understand their preference?

ranking / demo

queries



Outline

• Introduction
• Supervisory control in high-dimensional systems
• Inverse specification
• Conclusion and future works
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Supervisory Control: Shielding
An approximate method to provide fallback control to high-dimensional systems
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Keep safe away from forbidden states but 
maintain liveness to reach target states
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Dynamics: �̇� = 𝑓(𝑠, 𝑢)

Goal: find 𝒖 such that
∃ t, 𝒔 t ∈ 𝕋 ∧ ∀𝜏 ∈ [0, 𝑡], 𝒔 𝜏 ∉ 𝔽

ℓ 𝑠 𝑔 𝑠

Sum of costs, LagrangeReach-Avoid (RA)

V s = min
𝐮

𝐿 𝒔𝐮

=
V 𝑠 = min

𝐮
𝐿 𝒔𝐮

= min
"
𝑐 𝑠, 𝑢 + V(𝑠 + 𝑓 𝑠, 𝑢 Δ𝑡)

𝐿 𝒔𝐮 = Σ#$%& 𝑐(𝒔(𝑡))𝐿 𝒔𝐮 = min
#∈[%,&]

max{ℓ 𝒔 𝑡 , max
+∈ %,#

𝑔(𝒔(𝜏))}

𝕋

𝔽

𝑠 ∈ 𝕋 ⟷ ℓ 𝑠 ≤ 0: reachability 
s ∈ 𝔽 ⟷ 𝑔 𝑠 > 0: safety

max g s , min{ℓ 𝑠 ,min
"
V 𝑠 + 𝑓 𝑠, 𝑢 Δ𝑡 }
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Reach-Avoid Bellman Equation:
𝑉 𝑠 = max g s ,min ℓ 𝑠 ,min

,
V 𝑠-"

Goal: find 𝒖 such that
∃ t, 𝐬 t ∈ 𝕋 ∧ ∀𝜏 ∈ [0, 𝑡], 𝒔 𝜏 ∉ 𝔽

𝑠!" ≔ 𝑠 + 𝑓 𝑠, 𝑢 Δt

Discounted Reach-Avoid Bellman Equation:
𝑉. 𝑠 = 𝛾 max g s ,min ℓ 𝑠 ,min

,
V 𝑠-" + (1 − 𝛾) max 𝑔 𝑠 , ℓ(𝑠)

Curse of dimensionality
Lagrange or SUM
𝐿 𝜉 = Σ! 𝛾!𝑐(𝜉(𝑡))
V 𝑠 = min

"
𝛾 𝑐 𝑠, 𝑢 + V 𝑠#" + (1 − 𝛾)𝑐 𝑠, 𝑢

→ deep RL

Double Deep Q-Network
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Conservativeness of Discounted Reach-Avoid Set

Reach-Avoid vs. Lagrange Lunar Lander (6D: x, 𝑦, 𝜃, �̇�, �̇�, �̇�)
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vy = +1
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vy = -1

vy = 0
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Untrusted Oracles

Shielding scheme:
→ obtain a candidate action
→ simulate a short trajectory forward
→ if not, reach-avoid action
→ if remaining in the reach-avoid set, 
we execute the candidate action

Dubins Car
• State: x-pos, y-pos, heading angle
• Actions: straight, left turn and right turn

Value Function RolloutAnalytic

Approximation error!



• Learned policy degrades in the no-discount limit
• LL’s actions: Right, Left, Main thruster on, Thruster off
• Actor-Critic algorithms, e.g., soft actor-critic

• Zero-sum differential game
• 𝑉 𝑠 = max g s ,min ℓ 𝑠 ,min

3
𝐦𝐚𝐱
𝒅

𝑉(𝑠5
3,6)

• Principle of iterative adversarial improvements

Future Works
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𝛾 = 0.9999

Attacker
Defender

𝛾 = 0.99

𝜃 = �̇� = �̇� = �̇� = 0



• Unknown Environment Exploration: PAC-Bayes Control framework
• Assumption:

• An underlying distribution 𝐷 of environments
• We have a set of 𝑁 sample environments, 𝑆

• PAC-Bayes Bound: with probability 1 − 𝛿,
𝐶; 𝑃 ≤ 𝐶< 𝑃 + 𝑅𝑒𝑔 𝑃, 𝑃=

𝑅𝑒𝑔 𝑃, 𝑃= =
𝐾𝐿(𝑃| 𝑃= + log 2 𝑁

𝛿
2𝑁

• How can we add shielding to improve the bound?

Future Works
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Inverse Specification
Interact with human to better understand their preference
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Bobu et al. TRO’20
Bıyık et al. IJRR’20

Correction Demonstration Ranking

send queries to human and receive their 
ranking feedback

(1) components of objective
(2) constraints 

Mental States

Specification

Noisy
translation

Inverse
Specification



Previous Works –
inverse reinforcement learning / inverse optimal control

• Maximum Entropy IRL [Ziebert et al. AAAI’08]

• Based on demonstrations
• The trajectory distribution only relies on the human utility
• 𝑃𝒘𝑯 𝑞0 ∝ exp(𝑢𝒘𝑯(𝑞0)), 𝑢𝒘𝑯: human utility

12

Demonstrations can 
be hard to generate

Preference by reward and 
constraint is more succinct

• IRL by human preferences [Christiano et al. NeurIPS’17]
• Given a query, 𝐪 ≔ 𝑞0, 𝑞1
• Provide feedback (𝑓): 𝑞0 > 𝑞1, 𝑓 = 1, 0 &; else, 𝑓 = 0, 1 &

• Loss: 𝐿 = −∑𝑓 0 log𝑃𝒘 pick 𝑞0 +𝑓 1 log 𝑃𝒘 pick 𝑞1

• Constraint inference for IRL [Scobee et al ICLR’20]
• Assume nominal reward (_𝒘) and N available 

demonstrations (𝑄2)
• Maximize 𝑃 𝐶 = 3

4 5 %∏6∈7& exp(𝑢8𝒘(𝑞)) 𝟙5(𝑞)



Overall Structure

• Inverse specification
• We interact with humans to refine the problem 

specification and accelerate exploration

• Design optimization
• We pick candidate designs by genetic algorithms

or trained policies by reinforcement learning

• Human interface
• We pick informative queries from the candidate

designs or trajectories
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Experiment Details
• Human preference

• 𝑃𝒘𝑯,𝑪 pick 𝑞f ∝ exp(𝑢𝒘𝑯(𝑞f)) ⋅ 𝟙g 𝑞f
• Human model in inverse specification machinery

• 𝑃𝒘, 𝜽 pick 𝑞f ∝ exp(𝑢𝒘(𝑞f)) ⋅ ℎ𝜽 𝑞f
• Design space

• Each design: q ∈ ℝij
• The true optimal design is obtained by

argmax
k
𝒘l
m𝑞 ⋅ 𝟙g(𝑞)

• The predicted optimal design is obtained by
argmax

k
𝒘m𝑞 ⋅ ℎn(𝑞) 14



Infer utility, assume no explicit constraints
• Bayesian Update: 𝑃 𝒘 | 𝐪, 𝑓 ∝ 𝑃 𝑓 𝐪,𝒘 ⋅ 𝑃 𝒘

• Constraint-agnostic inferred utility over-emphasizes 
constrained features.
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no hard
constraints

one hard
constraint



Infer constraints, given proxy utility
• 𝐿 𝜽 = ∑(𝐪,o)∈p KL 𝑃𝜽 𝐪 || 𝑓 + 𝛼 Reg 𝜽

• Gradient descent on neural network parameters 𝜽

• Feasible designs but classified infeasible: 4.3%
• Infeasible designs but classified feasible: 0%

• Predict top designs by: argmax
k
𝑢𝒘 𝑞 ⋅ ℎ𝜽 𝑞

• Predicted top-5 designs: [133 23 45 114 173]
• Real top-5 designs: [133 23 45 114 173] 16



Future Works

• Infer the utility and constraint simultaneously
• Alternating gradient descent: 𝜈𝒘, 𝜽 𝑞 = 𝑢𝒘(𝑞) ⋅ ℎ𝜽(𝑞)

• Active learning: how to select the most informative 
queries to present to the human designer

• Information gain
• What is the analog metric?
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Key Takeaways
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Supervisory Control

Inverse Specification

• Discounted reach-avoid Bellman equation
enables reinforcement learning to solve HJ PDE

• We treat the policy as untrusted oracles and
employ a shielding scheme → Learned policy is
the best-effort reach-avoid policy

• Separating constraints from components of
objective function makes the problem easier

• We can infer constraints by querying human a
pair of designs and receiving ranking feedback



Future Works
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Supervisory Control

Inverse Specification

• How to separate the action policy and reach-
avoid value function?

• How to use RL to solve zero-sum reach-avoid 
differential game?

• How to use shielding scheme to improve PAC-
Bayes bound on novel environments?

• How to infer utility and constraint together?
• How to select the most informative queries to

present to the human designer?
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