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Abstract

Modeling data with linear combination of a few elements from a learned dictionary has been the focus
of recent research in machine learning and signal processing. In this final project, we present the statistical
guarantee and the state-of-the-art optimization algorithms of reconstructive dictionary learning (RDL)
for restoration task and predictive dictionary learning (PDL) for classification/regression task. Besides,
we introduce sparse coding algorithm which plays an important role in dictionary learning. In addition
to organize the materials from the reference papers, we interpret in our own words and compare different
works at the end of each section, such as generalization bound and optimization efficiency.

Index Terms — dictionary learning, sparse coding, generalization bound, stability, optimization efficiency

1 Introduction

1.1 Sparse Linear Model

Concretely, consider a signal x ∈ Rn. We say that it admits a sparse approximation over a dictionary
D = [d1 · · · dd] ∈ Rn×d, with d columns refered as atoms, when one can find a linear combination of a
“few” atoms from D that is “close” to the signal x, as shown in 1. For a simple explanation of sparse linear
model, the signal and images in Fig. 2(a) can be seemed as x and they can be composed by the different
frequency signals and many small blocks in Fig. 2(b) which are seemed as D.

Figure 1: Signal x can be represented with a “few” atoms from dictionary D

∗This work is the final project of Team 16 with topic: Matrix Factorization
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(a) Signal x (b) Dictionary D

Figure 2: Examples of sparse linear model

1.2 Notations

Vectors are denoted by boldface lower case letters and matrices by boldface upper case. For q ≥ 1, the
`q−norm of vector x ∈ Rn is defined as ‖x‖q , (

∑n
i=1 |xi|q)1/q, where xi is the ith entry of x. The `0−norm

of vector x is defined as the number of nonzero elements in x. The inner product of vectors is denoted by
〈x,y〉 = xTy. Let [d] := {1, · · · , d} for d ∈ N and supp(α) := {j ∈ [d] : αj 6= 0} for α ∈ Rd. X is a matrix
in Rn×m and Λ ⊆ [m], XΛ is the matrix in Rn×|Λ| whose columns are those of X indexed by Λ. Similarly,
xΛ is the sub-vector with elements indexed by Λ. We also denote ξk(X) as the kth eigenvalue of X.

Throughout this paper, suppose that the sample x ∈ Rn and assume training data set is of m samples
concatenated to form a matrix, denoted as X = [x1 · · · xm] ∈ Rn×m. In addition, the dictionary is of
dimension D = [d1 · · · dd] ∈ Rn×d and the sparse coding vector of x depending on D is denoted by
αD(x) ∈ Rd.

The rest of this paper is organized as follows: Section 2 illustrates the reconstructive dictionary learning
framework with applications, generalization bound and optimization algorithm. Section 3 demonstrates
the predictive dictionary learning framework with applications, generalization guarantee and optimization
algorithm. Section 4 compares several algorithm to solve `1-regularization of sparse coding. Finally, section
5 draws our conclusion. Appendix A summarizes the glossary used in the whole work, while the Appendix
B describes the work division of out team.

2 Reconstructive Dictionary Learning

2.1 Problem Formulation and Applications

Learning the dictionary instead of using off-the-shelf (predefined) bases has been shown to dramatically
improve the performance. Although some of the learned dictionary elements may sometimes “look like”
wavelets (or Gabor filters), they can further tuned to the input signals, leading to much better results in
practice. The goal of dictionary learning can be formulated as the following optimization problem below:

min
D,A
‖X−DA‖2F , A = [αD(x1) αD(x2) ... αD(xm)] , s.t. ‖α‖0 ≤ k, ∀i ∈ [m] (1)

The most common approach for (1) is to optimize between A (sparse coding) and D (dictionary update)
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alternatively. The learning of compact representations adapted to restoration tasks has a variety of appli-
cations in image and medical signal processing, such as denoising, inpainting and compression as shown in
Fig. 3.

(a) Image denoising (b) Image inpainting

(c) Image compression

Figure 3: Dictionary learning has a variety of applications

2.2 Generalization Bound

In [1, 2, 3], they provide sample complexity estimations to uniformly control how much the empirical average
deviates from the best function. [1] presents a general coding method where data drawn from a distribution
Π on the unit ball of a Hilbert space and are represented by finite dimensional coding vectors as shown in
Fig. 4. The reconstruction error is defined as below:

`u(x) = min
α∈Rd

‖x−DαD(x)‖22, s.t. ‖α‖1 ≤ λ−1

which means the deviation between original and the decoding vector and λ is the sparse constraints. When-
ever the codebook is compact and D is bounded, this approach is justified by the following high-probability,
uniform bound on the expected reconstruction error.

Figure 4: Data x ∈ Rn in Hilbert space are represented via linear map (D ∈ Rn×d) of prescribed set of
code α ∈ Rd

Theorem 1 (Generalization Error, Theorem 1.2 in [1]). With probability at least 1− δ in the observed data
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(x1, ...,xm) ∼ Πm, we have for every D ∈ D that

Ex∼Π {`u(x)} − 1

m

m∑
i=1

lu(xi) ≤
d√
m

(
14λ−1 +

b

2

√
ln (16mλ−2)

)
+ b

√
ln 1/δ

2m
.

The upper bound of estimation error in Theorem 1 is mainly via two approaches in terms of the sample
size m, the properties of the sets of codebook, and linear map D ∈ D. The first approach is based on a
direct bound for the Rademacher average of the loss class induced by the reconstruction error. The second
approach is to approximate the union with a finite union via covering numbers.

In [2], they develop generalization bounds on the quality of the learned dictionary for the constraints on
the coefficient selection, as measured by the expected `2 error. For `1 regularized coefficient selection, they

provide a generalization error bounds of order: O
(√

nd log(mk)
m

)
, which uses the covering number bound

and a bounded differences concentration inequality. k is the `0 sparse constraint.

Theorem 2 (Generalization Error, Theorem 7 in [2]). Let λ > e/4, with Π a distribution on Sn−1. Then
with probability at least 1−e−x over the m samples drawn according to Π, for all D with unit length columns:

Ex∼Πlu,min(x)− 1

m

m∑
i=1

lu,min(xi) ≤
√
nd log(4

√
mk)

2m
+

√
x

2m
+

√
4

m
.

The spirit of [3] is similar to [1, 2], and it focuses on the relation between the sample complexity and
the empirical risk. The contribution of [3] is to generalize the penalty functions and data distributions. The
class of penalty functions only need to be non-negative, lower semi-continuous, and coercive which is more
generalized. Besides, they also relax the assumption of the training data beyond unit ball in [1] ,[2]. They
also derive Lipschitz constant ρ from penalty function g for sharper bound.

Theorem 3 (Generalization Error, Theorem 1 in [3]). Consider ρ > ρΠ(ḡ) and define

β , h ·max

(
log

2ρC

c
, 1

)
,

Boundm(g,D,B) , 3c

√
β logm

m
+ c

√
β + x

m
.

Then, given 0 ≤ x ≤ mT 2 − β logm, we have: except with probability at most Λn(L) + 2e−x,

sup
D∈D
|L̂X(D)− Exlx(D)| ≤ Boundm(g,D,B)

Note that Λn(L) is primarily characterized by the penalty function g and the class of probability distributions
Π, while the constants C, h ≥ 1 depend on the class of dictionaries D, and c > 0, 0 < T <∞ depend on the
class of probability distributions B.

From Theorem 3, we can find out the order of estimation error is almost the same as [1, 2], which is

proportional to O

(√
logm
m

)
. For better understanding of [1, 2, 3], we compare this three works in Table 1.
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Table 1: The comparison between different works of generalization bound

Work A. Maurer & M. Pontil [1] D. Vainsencher [2] R. Gribonval [3]

Bound O

(
d

√
log(mλ−2)

m

)
O

(√
nd log(mk)

m

)
Boundm (g,D,B) = O

(√
log ρ logm

m

)

Sparse Constraints
indicator function

Extend to other penalty function

‖α‖1 ≤ λ−1 ‖α‖0 ≤ k

Data Distribution Unit Ball
Extend to more complex model

(sub-Gaussian)

Approach Uniform Convergence Extend to consider Lipschitzness

2.3 Optimization Algorithm

2.3.1 Method of Optimal Directions (MOD)

MOD is one of the first methods introduced to tackle the sparse dictionary learning problem. The core idea
of this algorithm is to solve the minimization problem as depict in (1). This method follows closely to the
K-means algorithm, with a sparse coding stage that uses either orthogonal matching pursuit (OMP) or focal
underdetermined system solver (FOCUSS) followed by an update of the dictionary. The main contribution
of MOD is the simple way of updating the dictionary which gives the optimal adjustment of the atoms in
each iteration and provides better convergence properties than the old method. The process is shown below:

• Sparse Coding (`0-based method)
The first step finds the coefficients given the dictionary referred to as sparse coding.

αDt(xi) , argmin
α∈Rd

‖xi −Dtα‖22, s.t. ‖α‖0 ≤ k, ∀i ∈ [m]

• Update Dictionary (whole dictionary)
With the assumption that At is fixed, they seek an update of Dt such that error ‖X − DAt‖2F is
minimized. By taking the derivative of error with respect to D, the derived update approach is shown
below:

Dt+1 = XAT
t (AtA

T
t )−1, At = [αDt(x1) αDt(x2) · · · αDt(xm)]

The above process is iteratively repeated until convergence. MOD has been proved to be a very efficient
method for low-dimensional input data x. However, due to the high complexity of the matrix-inversion
operation, this shortcoming has inspired the development of other dictionary learning methods.

2.3.2 K-SVD

Most works of dictionary learning are mainly focus on finding the best sparse signals respect to a given
dictionary. However, in this paper they want to adapt dictionaries to achieve better sparse signal represen-
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Figure 5: The comparison between K-means and K-SVD

tations. Therefore, they propose the K-SVD algorithm which generalizes the K-means clustering process. In
K-means algorithm, each sample is only represented by one of the learned vectors (di, ∀i ∈ [d]). However, in
sparse representations, each sample is represented as a linear combination of the learned vectors. Therefore,
sparse representations can be seemed as a generalization of the clustering problem. The comparison between
K-means and K-SVD is shown in Fig. 5.
K-SVD is also an iterative method alternates between sparse coding of the samples based on the current
dictionary and a process of updating the dictionary atoms to better fit the data. The detail of K-SVD is
described below:

• Sparse Coding (`0-based method)
The first step finds the coefficients given the dictionary which is the same as MOD.

αDt(xi) , argmin
α∈Rd

‖xi −Dtα‖22, s.t. ‖α‖0 ≤ k, ∀i ∈ [m]

• Update Dictionary (column-by-column update with active data)
The biggest difference between MOD and K-SVD is the method of dictionary update. In MOD,
the whole dictionary is updated simultaneously. However, in K-SVD, they update the dictionary
column-by-column by SVD computation which has smaller overhead than MOD. Besides, the update
of the dictionary atoms is combined with an update of the sparse representation which accelerates
the convergence rate. The update equation is described below and the schematic graph of dictionary
update is shown in Fig. 6:

min
dv

‖X−DtAt‖2F = min
dv

∥∥∥∥∥∥X−
d∑
j=1

djα
T
j

∥∥∥∥∥∥
2

F

= min
dv

∥∥∥∥∥∥
X−

∑
j∈[d], j 6=v

djα
T
j

− dvα
T
v

∥∥∥∥∥∥
2

F

, min
dv

∥∥Ev − dvα
T
v

∥∥2

F
, ∀v ∈ [d]

Figure 6: The schematic graph of K-SVD for dictionary update
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This algorithm has been considered to be standard for dictionary learning and used in a variety of applica-
tions.

2.3.3 Online Dictionary Learning (ODL)

Unlike iterative batch based algorithm accessing the whole training dataset at each iteration in order to
achieve empirical risk minimization, online dictionary learning (ODL) optimizes empirical risk with stochas-
tic approximation, and thus ODL has low memory consumption, lower computational cost and scales up
gracefully to large-scale data sets with millions of training samples

The algorithm is summarized in Algorithm 1. To prevent D from being arbitrarily large (which would
lead to arbitrary small values of α), it is common to constrain its columns d1, · · · ,dd to have `2-norm less
than or equal to one. We will call D the convex set of matrices satisfying this constraints:

D , {D ∈ Rn×d s.t. ∀j ∈ [d], ‖dj‖2 ≤ 1}. (2)

Algorithm 1 Online Dictionary Learning

Input:
• x ∈ Rn ∼ Π (a way to draw i.i.d samples from Π)

• λ ∈ R (regularization parameters)

• D0 ∈ D (initial dictionary)

• T (number of iterations)
Initialization: A0 ∈ Rd×d ← 0,B0 ∈ Rn×d ← 0 (reset the “past” information)
for t = 1 to T do

Step 0: Draw xt from Π

Step 1: Sparse Coding: compute αD using `1-norm minimization (e.g. ISTA, FISTA).

αt ← argmin
α∈Rd

1

2
‖xt −Dt−1α‖22 + λ‖α‖1.

Step 2: Update At, Bt

At ← At−1 + αtα
T
t ,

Bt ← Bt−1 + xtα
T
t .

Step 3: Update Dt using Algorithm 2, with Dt−1 as warm restart, so that

Dt ← argmin
D∈D

1

t

t∑
i=1

(1

2
‖xi −Dαi‖22 + λ‖αi‖1

)
,

← argmin
D∈D

1

t

(1

2
Tr(DTDAt)− Tr(DTBt)

)
,

where the expected loss is substituted by the surrogate loss.
end for
Return DT (learned dictionary)
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Algorithm 2 Dictionary Update

Input: Dt−1 = [d1 · · · dd] ∈ Rn×d,At−1 = [a1 · · · ad] ∈ Rd×d,Bt−1 = [b1 · · · bd] ∈ Rn×d
for j = 1 to d do

Update the j-th column to optimize for the surrogate loss:

dj ← ΠD

[
1

A[j, j]
(bj −Daj) + dj

]
end for
repeat until convergence
Return D (updated dictionary)

2.3.4 Comparison

The comparison between different dictionary learning algorithms is shown in Table 2. To reduce computation
overhead, K-SVD utilize atom-by-atom dictionary update, and ODL further achieve expected minimization
with stochastic gradient descent.

Table 2: The comparison between different dictionary learning algorithms

Algorithm MOD [4] K− SVD [5] ODL [6]

Sparse Coding
l0 -based method l1 -based method

(Matching Pursuit, Basis Pursuit) (ISTA, FISTA)

Update Dictionary whole dictionary atom-by-atom

Data Amount whole dataset active data only single data only

3 Predictive Dictionary Learning

3.1 Problem Formulation and Applications

Unsupervised (Reconstructive) dictionary learning has also been used for other purposes than pure signal
reconstruction, such as classification, but recent works have shown that better results can be obtained when
the dictionary is tuned to the specific task (and not just data) it is intended for. A general efficient framework
has been proposed [7, 8], and it is based on two-layer model (hypothesis). Compared with reconstructive
dictionary learning, the generalization guarantee and the optimization have been proven much difficult.

We present in this section a formulation for learning a dictionary in a supervised way for classification
or regression tasks, which is also finding a good data representation. Given a dictionary D obtained using
reconstructive dictionary learning presented in previous section, a vector x ∈ Rn can be represented as a
sparse vector αD(x). We want to predict the variable y from x, assuming they are associated. We can now
use the sparse vector αD(x) as a feature representation of a signal x in a classical empirical risk minimization
formulation:

min
W∈W

m∑
i=1

(
`s(yi,W,αD(xi))

)
+
γ

2
‖W‖2F ,

8



where W are model parameters which we want to learn, W is a convex set, γ is a regularization parameter,
and `s : Y × R 7→ [0, b], b > 0 is a convex loss function that measures how well one can predict y by
observing αD(x) given the model parameters W. For instance, it can be square, logistic, or hinge loss
from support vector machines. The subscript s of `s indicates here that the loss is adapted to a supervised
learning problem.

So far, the dictionary D is obtained in an unsupervised way. We now introduce the predictive (task-
driven) dictionary learning formulation, that consists of jointly learning W and D by solving

min
D∈D,W∈W

m∑
i=1

(
`s(yi,W,αD(xi))

)
+
γ

2
‖W‖2F ,

where D is a set of constraints defined in (2).

3.2 Generalization Guarantee

This subsection mainly utilizes the result in [7]. To provide generalization guarantee, we first define some
useful properties. If the dictionary and the data set are of these properties, we can induce some useful
lemmas and theorems to upper bound the estimation error.

3.2.1 Conditions

Definition 1 (Optimal Condition). Let Λ ⊆ [d] denote the active index set which the corresponding atoms
in dictionary are chosen, namely αj 6= 0 iff j ∈ Λ. Then, we have the optimal condition for sparse coding as{

〈dj , res(x,D)〉 = sgn(αj)λ, j ∈ Λ
|〈dj , res(x,D)〉| < λ j 6∈ Λ

.

Definition 2 (k-incoherence). For k ∈ [d] and D ∈ D, the k-incoherence µk(D) is defined as the minimum
eigenvalue among k-atom sub-dictionaries of D. Formally,

µk(D) = min{σk(DΛ) : Λ ⊆ [d], |Λ| = k},

where σk(A) is the kth eigenvalue of A.

Definition 3 (k-sparsity). If every point xi, ∀i ∈ [m] of X satisfies ‖αD(xi)‖0 ≤ k, then αD is k−sparse
on X.

Definition 4 (k-margin). Given a dictionary D and a data set X ∈ Rn×m with points xi ∈ BRn , i ∈ [m],
the k-margin of D on xi and data set X is

margink(D,xi) := max
I⊆[d]
|I|=d−k

min
j∈I
{λ− |〈dj , xi −DαD(xi)〉|} ,

margink(D,X) := min
i∈[m]

margink(D,xi).

3.2.2 Main Results

Different from reconstructive dictionary learning, one only need to ensure the stability of res(x,D) to
dictionary perturbations. However, in the sense of predictive dictionary learning, the complexity hinges
upon the stability of sparse code, which needs extra properties to ensure generalization bound.

We first introduce Lemma 1 to shift the analysis of difference between empirical risk and statistical risk
to difference between two independent empirical risks.
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Lemma 1 (Symmetrization by Ghost Sample, Lemma 1 in [7]). Let F(Zm,X
′′
m) ⊂ F be a random subclass

which can depend on both a labeled m-point data set Zm and an unlabeled m-point data set X ′′m. With
another labeled m-point data set Z ′m, if m ≥ ( bξ )2, then

PrZm,X′′m

{
∃f ∈ F(Zm,X

′′
m), L̂s,Zm(f)− Ls(z, f) ≥ ξ

}
≤ 2PrZm,Z′m,X

′′
m

{
∃f ∈ F(Zm,X

′′
m), L̂s,Zm(f)− L̂s,Z′m(f) ≥ ξ

2

}
. (3)

With Lemma 1, we can provide Proposition 1 with X′′m chosen as an empty matrix and F(Zm,X
′′
m) as{

f ∈ Fµ : margink(D,X) ≥ ι ,
√

387ε
λ

}
.

Proposition 1 (Generalization Bound, Proposition 1 in [7]). If m ≥ ( bξ )2, then

PrZm

{
∃f ∈ Fµ : margink(D,X) ≥ ι and L̂s,Zm(f)− Ls(z, f) ≥ ξ

}
≤ 2PrZm,Z′m

{
∃f ∈ Fµ : margink(D,X) ≥ ι and L̂s,Zm(f)− L̂s,Z′m(f) ≥ ξ

2

}
. (4)

We express the RHS of (4) using event A

A =

{
Zm, Z

′
m : ∃f ∈ Fµ : margink(D,X) ≥ ι and L̂s,Zm(f)− L̂s,Z′m(f) ≥ ξ

2

}
. (5)

We then divide A into there are at least or at most ψ points of ghost sample without guarantee of stable
sparse code and define event C as

C =

{
Zm, Z

′
m : ∃f ∈ Fµ : margink(D,X) ≥ ι and @X̃ ⊆ψ X′ : margink(D, X̃) >

1

3
margink(D,X)

}
,(6)

where X̃ ⊆ψ X′ stands for X̃ is a subset of X′ with at most ψ points removed. We now only need to bound
Pr{C}+ Pr{A ∩ C̄} with a simple fact:

Pr{A} = Pr{A ∩ C}+ Pr{A ∩ C̄} ≤ Pr{C}+ Pr{A ∩ C̄}. (7)

To upper bound the RHS of (7), we now present Theorem 4: the stability result of LASSO, which is the
fundamental theorem of Lemma 2 and 3.

Theorem 4 (Sparse Coding Stability, Theorem 1 in [7]). Let dictionaries D, D̃ ∈ D satisfy µk(D), µk(D̃) ≥
µ ≥ 0, ‖D− D̃‖2 ≤ ε and x ∈ BRn. Suppose that there exists an index set I ⊆ [d], |I| = d− k such that

|〈dj , x−DαD(x)〉| < λ− τ, ∀j ∈ I, (8)

for

ε ≤ τ2λ

43
. (9)

The following stability bound holds:

‖αD(x)−αD̃(x)‖2 ≤
3ε
√
s

λµ
. (10)

In addition, if ε = τ ′2λ
43 for τ ′ < τ , then ∀j ∈ I:∣∣∣〈d̃j , x− D̃αD̃(x)〉

∣∣∣ < λ− (τ − τ ′). (11)
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Condition (8) suggests we ensure the optimal condition (Definition 1) with a margin τ > 0, and condition
(9) suggests that permissible radius of perturbation (PRP). Therefore, (10) indicates the perturbation of
sparse coding is controlled by a constant factor times the dictionary perturbation, where the constant factor
relies on k-sparsity, k-incoherence and `1-regularization coefficient. In addition, (11) maintains under small
perturbation of dictionary will not change that a certain set of d−k samples will remain inactive in the new
sparse coding. In summary, some stability and margin are sustained after perturbation of dictionary, and
thus same active set is guaranteed.

For imminent propositions, we first provide the covering number of Dµ , {D ∈ D : µk(D) ≥ µ} and
Fµ = {f = (D,W) ∈ F : D ∈ Dµ}.

Proposition 2 (Proposition 3 in [7]). The proper ε-covering number of Dµ is bounded by (8/ε)nd

Proposition 3 (Proposition 4 in [7]). The product of proper ε-covering number of Dµ and W is bounded by

(r
2

)k (8

ε

)(n+1)k

exp

(
−m$2

2b2

)
.

Lemma 2 (Good Ghost, Lemma 5 in [7]). Fix µ, λ > 0 and k ∈ [d]. With probability at least 1− δ over two
m-sample data set Xm, X

′
m ∼ Πm, for any D ∈ Dµ, for which k-sparse(αD(X)) is satisfied, at least m− ψ

points X̃ ⊆ X′ satisfy margink(D, X̃) > 1
3margink(D,X) for

ψ , nd log
3096

margin2
k(D, X̃)λ

+ log(2m+ 1) + log
1

δ
. (12)

Lemma 2 can be derived from Theorem 4 and Proposition 3. If we denote Pr{C} = δ′, Lemma 2 suggests
the number of bad points in the ghost sample, which can then be used in following Lemma 3.

Lemma 3 (Large Deviation on Good Ghost, Lemma 6 in [7]). Define $ , ξ
2−(2ρθ+ bψ

m ) and θ , ε
λ(1+ 3r

√
k

µ ).
Then,

Pr
{
A ∩ C̄

}
≤
(r

2

)k (8

ε

)(n+1)k

exp

(
−m$2

2b2

)
. (13)

Proof: We first construct a event G ⊇ A ∩ C̄ as

G ,

 Zm, Z ′m:
∃f ∈ Fµ : margink(D,X) ≥ ι and

∃X̃ ⊆ψ X′ : margink(D, X̃) > 1
3margink(D,X) and

L̂s,Zm(f)− L̂s,Z′m(f) ≥ ξ
2

 .

It is equivalent bound the large deviation under the random sub-hypothesis class

F̃(X,X′) ,

{
∃f ∈ Fµ : margink(D,X) ≥ ι and

∃X̃ ⊆ψ X′ : margink(D, X̃) > 1
3margink(D,X)

}
.

Let Fε = Dε ×Wε, where Dε is the ε-cover of D and Wε is the ε-cover of W. Consider f = (D,W) ∈
F̃(X,X′) and f ′ = (D′,W′) ∈ Fε be the closest cover function of f . If ε is small enough to satisfy Theorem
4, it is guaranteed that with at least m− ψ points of X′ and all points of X

|〈W,αD(x)〉 − 〈W′,αD′(x)〉| ≤ |〈W −W′,αD(x)〉|+ |〈W′,αD(xi)−αD′(x)〉|

≤ ε

λ
+ r

3ε
√
k

λµ
=
ε

λ

(
1 +

3r
√
k

µ

)
, θ. (14)
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Therefore,

1

m

m∑
i=1

∣∣`s(yi, 〈W,αD(xi)〉)`s(yi, 〈W′,αD′(xi)〉)
∣∣ ≤ ρθ

1

m

m∑
i=1

∣∣`s(yi, 〈W,αD(xi)〉)`s(yi, 〈W′,αD′(xi)〉)
∣∣ ≤ ρθ +

bψ

m
. (15)

the difference between the losses of f and f ′ on the double sample will be at most 2ρθ + bψ
m . If we denote ν

as the absolute deviation between the loss of f on original sample and ghost sample, then the loss of f ′ on
original sample and ghost sample will be at least ν − (2ρθ+ bψ

m ) Consider ν > ξ
2 , then the target we want to

bound turns to

PrZm,Z′m

{
∃f ′ ∈ Fε, L̂s,Zm(f ′)− L̂s,Z′m(f ′) ≥ ξ

2
−
(

2ρθ +
bψ

m

)
, $

}
. (16)

We then apply Hoeffding’s Inequality under the case of a single f ′ based on the fact that `s(yi, f
′(xi))−

`s(y
′
i, f
′(x′i)) ∈ [−b, b] and thus we have

PrZm,Z′m

{
L̂s,Zm(f ′)− L̂s,Z′m(f ′) ≥ $

}
≤ exp

(
−m$2

2b2

)
. (17)

With Proposition 3 and union bound, we have

PrZm,Z′m

{
∃f ′ ∈ Fε, L̂s,Zm(f ′)− L̂s,Z′m(f ′) ≥ $

}
≤
(r

2

)k (8

ε

)(n+1)k

exp

(
−m$2

2b2

)
. (18)

Therefore, we complete the proof by

Pr
{
A ∩ C̄

}
≤ PrZm,Z′m

{
∃f ′ ∈ Fε, L̂s,Zm(f ′)− L̂s,Z′m(f ′) ≥ $

}
≤
(r

2

)k (8

ε

)(n+1)k

exp

(
−m$2

2b2

)
. (19)

Theorem 5 (Overcomplete Learning Bound, Theorem 3 in [7]). With probability at least 1 − δ over a
Zm ∼ Pm, for any k ∈ [d] and any f = (D,W) ∈ F satisfying k-sparse(αD(X)) and

m >
387

margin2
k(D,X)λ

, (20)

the generalization error L̂s,Zm(D,W)− Ls(z,D,W) is

O

b
√
nd logm+ log 1

δ

m
+

b

m
nd log

1

margin2
k(D,X)λ

+
ρ

m

r
√
k

λµk(D)

 . (21)

Proof: With Proposition 1, Lemma 2 and 3, if we choose Pr{C} = δ′ =
(
r
2

)k (8
ε

)(n+1)k
exp

(
−m$2

2b2

)
, δ

4

and ε = 1
m , yielding

PrZm

{
∃f ∈ Fµ : margink(D,X) ≥ ι and L̂s,Zm(f)− Ls(z, f) ≥ 2

(
$ + 2ρθ +

bψ

m

)}
≤ δ, (22)
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with

$ = b

√
2((n+ 1)d log 8m+ d log r

2 + log δ
4)

m
,

ρθ =
2ρ

mλ

(
1 +

3r
√
k

µ

)
,

bψ

m
=

b

m

(
nd log

3096

margin2
k(D,X)λ

+ log(2m+ 1) + log
δ

4

)
. (23)

We now discuss the upper bound of estimation error derived in Theorem 5. The blue term represents the
difference between loss of f ′ ∈ Fε on original sample and ghost sample, which somehow reflects the general-
ization error based on the ε-cover function. In addition, this term matches the same order of reconstructive
dictionary learning [2] and in Table 1. The purple term demonstrates the good ghost sample points, which
we can use ρ-Lipschitz to bound the `s function. However, the green term is used to bound those bad ghost
sample points, where the number of such points is directly from Lemma 2. Both purple and green terms
represent the estimation error via ε-cover of the space of dictionary and hypothesis class, mainly relying on
the stability of sparse coding under some dictionary and classifier perturbations as quantified by Theorem
4. We finally make a remark that the sample requirement in (20) is from we set the ε-cover to be ε = 1

m

and ε =
( 1

3
margink(D,X)2λ

43 to satisfy PRP condition in (9). Therefore, for the sample lower bound and purple
and green term are determined primarily by Theorem 4.

3.3 Optimization Algorithm

This subsection focuses on the optimization of task-driven dictionary learning (TDDL). The method is a
projected first-order stochastic gradient descent algorithm (summarized in Algorithm 3). Instead of empirical
risk minimization, TDDL adopts expected risk minimization (Ey,x[`s(y,W,αD(x))]), and the expectation
is taken with respect to the unknown probability distribution P (x,y) of the data. Hence, stochastic gradient
descent algorithms are used by cycling over a random permuted training set in practice. Even though the
sparse coefficient αD(x) are obtained by solving a non-differentiable optimization problem, `s is differentiable
onW×D (uniformly Lipschitz continuous, optimality conditions of the elastic-net), and one can compute its
gradient because it has been shown that the loss function admits a first-order Taylor expansion. Furthermore,
the algorithm has been shown to converge to stationary points with satisfied assumptions.

13



Algorithm 3 Stochastic Gradient Descent Algorithm for Task-Driven Dictionary Learning

Input:
• (x,y) ∼ P (a way to draw i.i.d samples of P )

• λ, γ ∈ R (regularization parameters)

• D0 ∈ D,W0 ∈ W (initial dictionary and weights)

• T (number of iterations), η (learning rate parameter)
for t = 1 to T do

Step 0: Draw (xt,yt) from P .

Step 1: Sparse Coding: compute αt using `1-norm minimization (e.g. ISTA, FISTA).

αt ← argmin
α∈Rd

1

2
‖xt −Dt−1α‖22 + λ‖α‖1.

Step 2: Compute the active set:

Λ← {j ∈ [d] : αt[j] 6= 0}.

Step 3: Compute β∗t : Set β∗Λc = 0 and

β∗Λ = (DT
ΛDΛ)

−1∇αΛ`s(yt,Wt−1,αt).

Step 4: Update the parameters by a projected gradient step

Dt ← ΠD
[
Dt−1 − η(−Dt−1β

∗
tα

T
t + (xt −Dt−1αt)β

∗T
t )
]
,

Wt ← ΠW [Wt−1 − η(∇W`s(yt,Wt−1,αt) + γWt−1)] ,

where ΠW and ΠD are respectively orthogonal projections on the sets W and D.
end for
return DT , WT (learned dictionary and weights)

4 Sparse Coding Optimization Algorithm

In section 2, we introduce how to co-optimize D and A, while in section 3, we further co-optimize W.
However, there is a crucial step in reconstructive or predictive dictionary learning: how to attain sparse
coding. In this section, we will introduce proximal gradient descent in `1-norm regularization and its
extension with Nesterov-like acceleration. We also will compare the convergence rate of proximal gradient
descent and sub-gradient descent.

4.1 Proximal Gradient Descent

We first formulate the `1-norm regularization (a.k.a. LASSO expression) as

h(α) ,
1

2
‖x−Dα‖22 + λ‖α‖1 , f(α) + g(α). (24)

Since g(α) is not differential everywhere, it’s very intuitive we can solve LASSO using sub-gradient descent
(Sub-GD). However, Sub-GD suffers from slow convergence rate of order O(T−1/2), which is mentioned in
Lecture 4 class note [9].
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One way to avoid slow convergence rate is using proximal gradient descent, which utilizes the proximal
operator to iteratively solve the sub-problem, so it is much more computationally efficient than the original
problem. The proximal gradient descent of LASSO use second-order approximation upon f(α) and replace
∇2f with 1

ηt
I, which in iteration t can be formulated as below:

αt+1 = argmin
α

{
f(αt) + 〈α−αt,∇f(αt)〉+

1

2ηt
‖α−αt‖22 + g(α)

}
, (25)

where ηt can be viewed as step size. After neglecting constant terms, we rewrite (25) as

αt+1 = argmin
α

{
1

2ηt
‖α− (αt − ηt∇f(αt))‖22 + g(α)

}
. (26)

4.2 Iterative Shrinkage-Thresholding Algorithm

We now begin to introduce Iterative Shrinkage-Thresholding Algorithm (ISTA), which provides a shrinkage
solution to (26) as

αt+1 = Sληt (αt − ηt∇f (αt)) , (27)

where shrinkage operator is

Ss(α)j = (|αj | − s)+sgn(αj), ∀j ∈ [d], (28)

and

(x)+ =

{
x, x > 0
0, x ≤ 0

. (29)

Fig. 7 shows the such shrinkage operation of one entry in α, which somehow reflects the influence of `1-norm
regularization, suppressing the small value of αj to zero.

Figure 7: Shrinkage operation of one entry in α (28)

The ISTA algorithm can now be summarized in Algorithm 4, mainly relying on (27) with a constant step
size ηt = 1

β , ∀t, where β is the smoothness of f(α). ISTA increase the convergence rate from O(T−1/2) →
O(T−1) [11].
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Algorithm 4 Iterative Shrinkage-Thresholding Algorithm (ISTA) with constant step size

Input:
• Step size: η = 1

β

• Threshold: ζ

• Dictionary: D

• Encoded Signal: x
Output:

• Sparse encoding signal: αD(x)
Algorithm:

Step 0: Pick α1 ∈ Rd randomly.

Step 1: At iteration t (t ≥ 1), compute

αt+1 = Sλ/β
(
αt −

1

β
∇f (αt)

)
.

If |h(αt+1)− h(αt)| ≤ ζ, return αt; else, repeat Step 1 and t← t+ 1.

4.3 Fast Iterative Shrinkage-Thresholding Algorithm

Just like Nesterov accelerates GD with well-structure point, which extend the concept of momentum, similar
idea can be adopted to ISTA, resulting in Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The
FISTA algorithm is summarized in Algorithm 5, which consists of mainly three operations in each iteration:
shrinkage operation, coefficient update and new well-structure point. FISTA increase the convergence rate
from O(T−1)→ O(T−2) [11].

Algorithm 5 Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) with constant step size

Input:
• Step size: η = 1

β

• Threshold: ζ

• Dictionary: D

• Encoded Signal: x
Output:

• Sparse encoding signal: αD(x)
Algorithm:

Step 0: Pick ν1 = α1 ∈ Rd randomly, κ1 = 1.

Step 1: At iteration t (t ≥ 1), compute

αt+1 = Sλ/β
(
νt −

1

β
∇f (νt)

)
,

κt+1 =
1 +

√
1 + 4κ2

t

2
,

νt+1 = αt+1 +
κt − 1

κt+1
(αt+1 −αt).

If |h(αt+1)− h(αt)| ≤ ζ, return αt; else, repeat Step 1 and t← t+ 1.
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4.4 Optimization Efficiency

Table 3 summarizes the difference between Sub-GD, ISTA and FISTA.

Table 3: Comparison between Sub-GD, ISTA and FISTA.
Algorithm Sub-GD [9] ISTA [10] FISTA [11]

Approach GD Proximal GD

Acceleration X X Nesterov-like

Convergence Rate O(T−1/2) O(T−1) O(T−2)

Fig. 8 shows the convergence rate of Sub-GD, ISTA and FISTA, demonstrating the influence of proximal
gradient descent over Sub-GD and the effect of Nesterov-like acceleration.

Figure 8: Convergence rate of Sub-GD, ISTA and FISTA (Figure 8.2 in [12])

5 Conclusions

In this work, we introduce the statistical guarantee and optimization of reconstructive and predictive dictio-
nary learning respectively and analyze the converge rate of different algorithms for LASSO optimization of
sparse coding. In Section 2, several generalization bounds of reconstructive dictionary learning are compared
for 1) less parameter dependency thus sharper bound and 2) more general sparse constraint/data distribu-
tion cases. Furthermore, different optimization algorithms such as MOD, K-SVD, ODL are discussed in
reducing computation overhead by 1) atom-by-atom dictionary update and 2) stochastic process. In Section
3, we further discuss predictive dictionary learning which utilizes back-propagation to consider the influence
of labels. Stability of sparse coefficient under perturbed dictionary is discussed and the upper bound of
estimation error is further derived. Moreover, TDDL algorithm is introduced to efficiently co-optimize the
dictionary and classifier under supervised loss. In Section 4, proximal gradient descent on LASSO problem
is introduced and the shrinkage operator and Nesterov-like acceleration are further discussed in ISTA and
FISTA algorithm. The convergence rate of different algorithms are also analyzed.
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Appendices

A Glossary

Notation Description

[m] {1, 2, · · · ,m}
Π Marginal Probability measured over space BRn

P Joint Probability measured over BRn × Y
X Unlabeled m-sample training data set
`u Unsupervised loss function
`s Supervised loss function
Zm Labeled m-sample training data set
X′′ Unlabeled m-sample ghost data set
Z ′m Labeled m-sample ghost data set
rBRn The ball in Rd with radius r

D The space of dictionaries (BRn)d

W The space of linear hypothesis class equal to rBRn

dj The jth atom of dictionary D
αD(x) Sparse coding vector of x depending on D
res(x,D) Residual error of original and reconstructive signal: x−DαD(x)
µk(D) k-incoherence: the minimum eigenvalue among k-atom sub-dictionaries of D

k-sparse(αD(X)) k-sparsity: it’s true if ‖αD(xi)‖0 ≤ k, ∀i ∈ [m]

margink(D,xi)
max I⊆[d]

|I|=d−k
minj∈I {λ− |〈Dj , xi −DαD(xi)〉|}

margink(D,X) mini∈[m]margink(D,xi)

Dµ {D ∈ D : µk(D) ≥ µ}
F {f , x 7→ 〈W,αD(x)〉 : D ∈ D, W ∈ W}
Fµ {f = (D,W) ∈ F : D ∈ Dµ}
ψ The maximum number of bad samples in ghost data set

X̃ ⊆ψ X′ X̃ is a subset of X′ with at most ψ points removed

A
{
Zm, Z

′
m : ∃f ∈ Fµ : margink(D,X) ≥ ι and L̂s,Zm(f)− L̂s,Z′m(f) ≥ ξ

2

}
C

{
Zm, Z

′
m : ∃f ∈ Fµ : margink(D,X) ≥ ι and @X̃ ⊆ψ X′ : margink(D, X̃) > margink(D,X)

3

}
Dε The ε-cover of D
Wε The ε-cover of W
Fε Dε ×Wε

Ss(α)j Shrinkage operator of αj with threshold s: (|αj | − s)+sgn(αj)

B Work Division

Name Student ID Work Assignment

Kai-Chieh Hsu B03901026 Section 1.2, Section 3.2 and Section 4

Ching-Yao Chou F03943134 Section 1.1, Section 2.3, Section 3.1 and Section 3.3

Chieh-Fang Teng D06943020 Section 2.1, Section 2.2 and Section 2.3.2
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