s/\FE

ROBOTICS

Reinforcement Learning Tutorial

Kai-Chieh Hsu
Aug. 11, 2022

AR S

S/ \FE

Outline

» |ntroduction: Reinforcement Learning and Markov Decision Process
* Dynamic Programming
» Value lteration and Policy lteration
- Model-Based Reinforcement Learning
» Model-Free Reinforcement Learning
» Temporal-Difference Learning
» Policy Gradient and Actor-Critic
» Discussion: Research Directions
» Safe Reinforcement Learning
- Multiagent Reinforcement Learning

David Silver, Lectures on Reinforcement Learning, https://www.davidsilver.uk/teaching/

Sequential decision making LB
* Long-term effect S/\FE

' Delayed reward Reinforcement Learning (RL)

~

L L L N

Action

Vinyals et al., AlphaStar: Grandmaster level in StarCraft Il using multi-agent reinforcement learning

Markov Decision Process (MDP)

MDP is a mathematical framework to describe an environment in RL.

Markov Property (the main assumption in MDP)

A MDP is a tuple of M :=(S,A,P,Py,R,)

« § ={s1,52, -+ } IS the state space

« A={ai,a9,---} is the action space

« P: S x A — ASis the transition function: P(si+1 =8 | st = s,a; = a)

« Py € AS is the distribution of the initial state: Po(so = s)

* R:S x A— R is the reward function: R(s,a) = E[ri+1 | st = s,a: = a]

» v € (0,1] is the discount factor (how much you care about the future)

S

FE

LABORATORY

/_\‘77(0,|3):Pr(at:a,|st:s)

RL wants to find a (stochastic) policy m: & —» AA, that maximizes the return

at time 1=0 In this environment

n
“s0~Po,8t+1~P(-|st,at),ar~m(-|st) E :’7 Sta a't
- t=0

D p, :tﬂ [GQ ‘ So = S]:

where the return at time t is the total discounted reward from time step t

Ge =T+ Y2+ = Y Vrprs

Value function is the reward-to-go (or cost-to-go) from each state:

VT (s) :=E;|Gs | s = 8] =

Ui + 9V (8141) | 8¢ = 8]

Quality function (or Q-function) is the reward-to-go (or cost-to-go) given an initial

state-action pair:

Q™ (s,a) :=E;|G; | st =s,a; = a] =

CrlTe+1 YV (S¢41) | ¢ = 8,a: = a

The connection between the value function and the Q-function

=Y el Q7 (s,0) Q7(s,0)

ac A

s’'eS

= R(s,a)+7 Y _ P(s' | 5,a)V"(s)

AR S

S/ \FE

ROBOTICS
LABORATORY

S/ \FE

Planning by Dynamic Programming (DP) =&

Principle of Optimality: the subsolutions of an optimal solution of the problem are
themselves optimal solutions for their subproblems.

Overlapping subproblems: cached and reused
MDP satisfies these properties as

Bellman equation provides the optimal structure
» Value function serves as the cache
Full knowledge about the underlying MDP

VT(s) = Z m(a |) (R(s, a) + 7y Z P(s' | s, a)V’”(s’))

acA s’eS

V*(s) = maxR(s,a) + v Z P(s' | s,a)V*(s")

cA
. s'eS

s/\FE

Policy lteration (Pl) and Value Iteration (VI) %

Policy Evaluation Value Evaluation
VT (s) =D mal9)Q" (s,a)
= (VM) = magR(s,0) +9 Y P 5 a)VH()
) " . s’'eS
Q" (s,a) =R(s,a) +v Y P(s | s,a)V™ (s)
s’'eS
Policy Improvement Optimal Policy
P9 = 0T e Q™" (s,a) Q*(s,a) =R(s,0) +7) P(s' | 5,0)V(s)
0, otherwise s'eS
) | 1, a=argmax, 4 Q*(s,a’)
T (a]s) = { 0, othervffise

starting
Vr

Bellman Expectation Eq. Bellman Optimality Eq.

AR S

S/ \FE
Model-Based RL R
Concerns: Two sources of
approximation error Poli cy / Value
'l' ~~“~~~ (7{-, Vﬂ.)
l" “1
." Plannin
! E (VI PI)gE Plus model-free RL: Execute
! . 5 E.g., Monte-Carlo Tree Search
Model Transitions
M :=(S,A,P,Py,R,7) (s,a,r,s")
_________________ Model Learning

> i (Supervised Learning)

S/ \FE

Model-Free RL

Instead of full backup, can we learn the Q-function/policy from episodes of
transitions?

. learns the Q-function and then obtains the optimal policy by arg max
methods: directly learns the optimal policy by experiences
methods: combines both TD learning and policy gradient methods

AR S

s/\FE

Monte-Carlo (MC) and Temporal-Difference (TD) “

~ Tt —+ VQ(St—Fla at+1)) EXhaUStive
Dynamic search
_ _ _ o _ programming
Sampling: updates with multiple transitions Bootstrapping: updates toward an x ..
(S¢,a¢, 74141, St11) instead of a full backup estimated return (TD target) il | o 8 K b
R
Q(st,a¢)< Q(s¢,ar) + @(Ttﬂ +YQ(st+1, a¢41) — Q8¢ at))
- This Q-function can be parameterized by a neural network (DQN)! S PRI
: . i backups Y Temporal-
- Discrete action space and ¢-greedy exploration dlgf:rrrtleirgge 1
a~m(-|ss), xT>e€
A+ — . - . -
a4 ~ UIllf(A), r < € shallow bootstrapping, A geep :
- backups backups

- Off-Policy algorithm: the policy to sample actions is different from the
policy we optimize.

!
Q(st,ar)«Q(s¢, as) + Oé(Gt — Q(s¢, Cbt))

MC prediction: Gy = Ve
» episodic environments k=0
» zero bias, high variance

Mnih et al., Playing Atari with Deep Reinforcement Learning, NuerlPS workshop, 2013

AR S

S/ \FE

Temporal-Difference (TD) Learning s

Gt = Z’Ykrt—l—k—l—l R Tig1 + VQ(St41, Grg1)

k=0
Sampling: updates with multiple transitions Bootstrapping: updates toward ¢ 5ol
(S¢,a¢, 74141, St11) instead of a full backup estimated return (TD target) — DDQN
- Prioritized DDQN T
roge L — Dueling DDQN A / - W
Qu(st; at)Qu(se, ar) + a("‘t+1 +YQuw(St+1, at+1) — Qu (st at)) S B i AW
é — Noisy DQN ad g
. == Rainbow f‘u[‘ /
° There are a couple of tricks to make this moving target update more stable. § ... /
- One well-known trick is called double Q-network (DDQN). z 5 Y VW
g 100% '
Qu(5t,at) < Qu(st,at) + a('rt+1 +YQu (St41, at41) — Qu (¢, at)) S
=
at+1 = argmax Q,(S¢+1, a)
a
iy 100 300

Millions of frames

Hessel et al., Rainbow: Combining Improvements in Deep Reinforcement Learning, AAAl, 2018
Van Hasselt et al., Deep Reinforcement Learning with Double Q-learning, AAAI, 2016

AR S

S/ \FE

Policy Gradient s

- What if the action space is continuous?
- Can we have a stochastic policy?

— Directly optimizes the policy visitation frequency

p™(s) = Po(s) + > 7' Plst = s)

J(0) := Ep, [% Go | so = SH
=3 0™(5) Y mols,@)Q (5, 0) = Bya ey | Q7 (s50,00)

VoJ(0) = Z P (s) Z (s, a)Velog(my) Q™ (s, a)

= E, v x, |Volog(mg)Q™ (¢, ay) s Ge =) V'rirs REINFORCE R
— 4p"0 Ty 6 LOZ\ Tt ty Wt —0
\ - A = Q7 (s¢,ar) — V™ (s:) Proximal Policy Optimization
K Qo (St, CLt) Soft Actor-Critic j

Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning, Machine Learning, 1992
Schulman et al., Proximal Policy Optimization Algorithms, arXiv, 2017
Haarnoja et al., Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, ICML, 2018

AR S

J(0) = Epro m, [QM (St at)] RSOBO'II'-TCES

Proximal Policy Optimization Soft Actor-Critic

Two neural networks to parameterize Q-function and policy
()., 1s called critic because it estimates the quality of the
parameterized policy.

o Is called actor since it determines how agent reacts in the
environment.

o | 7"'9(67/75‘315) o

=K 0"k ay ~7o(-|s¢) |:77t((9)A7T0k:|

N T,—1 Wek - Off-Policy algorithm
S‘ S‘ nnt
Zn 1 n n=1 t=0
- On-Policy Algorithm: trajectories are sampled by 7¢, . I(0) = Eonrs [E“””("S> [Q“’(S’ @) — alogm(a | S)H d ~ mo(- | 8)
» The updated policy should not be too far from the old one. L(w) = E(s.a.r5)~8 [(Qw(s a) — (r+7Qu (s, a'))>2]
N T,—1
J(6) nt(O) A, clip(n,0(0),1 — v, 1 4+ v) AR’
(0) = Zn T n> 1 t>0 min {77 () A 1 clip(1,6(6) v, 1+ v) ’t} The policy is not good

enough! Improve it.

A<O

A>0

> 1:(0) k

1—-v1

~

Schulman et al., Proximal Policy Optimization Algorithms, arXiv, 2017
Haarnoja et al., Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, ICML, 2018

0 11+v

How about this
new policy?

Safe Reinforcement Learning

Safe Exploration

The safety Q-function Q®and policy T°

."/‘

&

-1

QUM 7)<y, ?

Observation Candidate Action

Shielding Classifier

X Unsafe

Backup Policy

Sim-to-Real Transfer

® training prior P()
o\ o S (set) - training posterior P

e unseen from) (distribution)

PAC-Bayes Control: With high probability:

RD(P) > RPAC(Pa PO) ‘= RS(P) o \/C(Pv PO)

Test Generalization Training
reward Bound reward

Hsu*, Ren” et al., Sim-to-Lab-to-Real: Safe Reinforcement Learning with Shielding and Generalization Guarantees, arXiv, 2022

AR S

S/ \FE

ROBOTICS
LABORATORY

Regularizer

AR S

S/ \FE

ROBOTICS

Multiagent Reinforcement Learning

Centralized Training Robust RL (Zero-Sum Game)
Decentralized Execution

InvertedPendulum HalfCheetah Swimmer

h!, ¢) (h?€) ¢ f

(7
1
h u1t

(&)~ (uy %)
u? h?
t That {Q(uazl, u'at,_.),.T_,Q(ua=|U|, u_at’"):
(hat-1)_> GRU _'(hat) _/

1] |yt | 2 | |2 A A
0t u- u-, Ot

?

Environment (Oat’ a, uat-l) (u?,s,o0?,a, “t-1)

oYt
(a)

(c)

(b)
Al(s,a) == Q(s,a) = > w(a" | h)Q(s, (a",a™)) max min J(m, 1) = B
a’*e A 0 (0

Foerster et al., Counterfactual Multi-Agent Policy Gradients, AAAI, 2018
Pinto et al., Robust Adversarial Reinforcement Learning, ICML, 2017

AR S

: : s/\F
Other Directions RN
How to formulate the reward function? Inverse Reinforcement Learning
Can we learn from static data set? Offline Reinforcement Learning
Sample complexity and convergence? Reinforcement Learning Theory
Is Markov property necessary? Representation Learning, Transformer

OTHER THOUGHTS...

