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Compressed Sensing 

for ECG Telemonitoring
Problems of Digital Wavelet Transform (DWT)

High bandwidth incompatible to ADC (Nyquist sample rate)

High Computational Complexity (Compression)

Compressed sensing (CS) combines sampling and compressing

Reduce cost and latency in sampling

CS-based sensors achieves a 37% node lifetime extension [2]

37% node

lifetime extension

High

Complexity

High

Bandwidth
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Reconstructed Analysis (RA)

High computational complexity because of CS reconstruction algorithms

Inappropriate at edge devices.

Compressed Analysis (CA)

Reduce power (classification on compressed signals), suitable at edge devices

Reduce the bandwidth requirement (only transmitting AF signals)

High

Complexity

Compressed Analysis

for ECG Telemonitoring

AF: Atrial Fibrillation
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Naïve CA (CA-N)

Combining CS with Task-Driven Dictionary Learning (TDDL)

What is TDDL [5]

Learning a dictionary (𝐃) to provide predictive sparse coding (𝛂) at given data set

Learning a classifier (𝐖) to classify by the sparse coding 𝛂

Why we choose TDDL?

Low Complexity  Overcome battery constraint and bandwidth scarcity

High Generalization  Limited label of ECG dataset

The on-line inference mode of CA-N

𝐃 and 𝐖 learned on original data (𝐗)

Accuracy degrades, needing double parameters to reach same performance 

on original data

𝐱 𝚽 𝚵 = 𝚽𝐃 𝐖

Accuracy 

Degrade

ො𝐱 𝛂
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Contribution of Proposed Scheme (1/2)

Low-Complexity (overcame battery and bandwidth requirement)

Our proposed Eigenspace-aided Compressed Analysis (CA-E) vs

Naïve Compressed Analysis (CA-N)

Reduce about 67% parameters (Memory ↓)

Reduce about 87% inference time (Power ↓)

Reduce about 76% training time (Power ↓)

Model # Parameters Training Time (s) Inference Time (ms) Accuracy (%)

CA-N 13k 452.56 26.94 89.24 ± 0.520

CA-E

(Our proposed)
4.25k 107.15 3.50 90.05± 0.256
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Contribution of Proposed Scheme (2/2)

High-Stability 

CA-E outperforms DNN and SVM by over 10% when the amount of data is 

halved. (Overcame limited label of ECG dataset)

CA-E reaches about 90% under all compressed ratio (Stable under all 

compressed ratio)

10%

13%
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Eigenspace-Aided CA (Training)

Principal Component Analysis (PCA)

Record mean vector (𝛍) of dataset (𝐗)

Learn eigenspace (𝚿 ∈ ℝ𝑵×𝒓) of 𝐗

Transpose to eigenspace by 𝐓 = 𝚿𝐓(𝐗− 𝛍)

TDDL to learn 𝐃 and 𝐖 on 𝐓

Stage I. Initialize

Dictionary: online dictionary learning (ODL) [6]

Weight: square / logistic loss

Stage II. Co-optimize 𝐃 and 𝐖 with labels

Alternates between 𝐀 and 𝐃,𝐖

Update dictionary with back propagation rule

Sparse coding plays an important role in both stage.

min
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Eigenspace-Aided CA (Inference)

Eigenspace Transform

Compressed sensing signal is transmitted with known sensing matrix (𝚽), 

the decoding data is obtained by

𝐬 = 𝚽𝚿 + ො𝐱 − 𝚽𝛍 = 𝚯+ ො𝐱 − 𝚽𝛍


+: pseudo-inverse

The decoding vector (𝐬) then pass through TDDL-based classifier

Get sparse coding 𝛂(𝐬, 𝐃)

Simple linear classifier 𝐖

𝐱 𝚽
𝐃 𝐖

ො𝐱

𝚿 𝛍

𝚽

𝛂𝐬

𝛂𝐃 ≜ argmin
𝛼∈ℝ𝑑

1

2
𝐱 − 𝐃𝛂 2

2 + 𝜆 𝛂 1
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Scheme Development (1/2)
Sensor

DWT-Based

CS-Based

Analysis

Reconstrcted (RA)

Compressed (CA)

High

Complexity

High

Bandwidth

37% node

lifetime extension

High

Complexity
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Scheme Development (2/2)
Compressed Analysis

Prototype

Naïve

Eigenspace-aided

𝐱 𝚽
𝐃 𝐖

ො𝐱

𝚿 𝛍

𝚽

𝛂𝐬

𝐱 𝚽 𝚵 = 𝚽𝐃 𝐖

Accuracy 

Degrade

ො𝐱 𝛂
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Accuracy vs Dictionary Size

To surpass DNN & SVM (~85%), CA-E 

needs 30 atoms, but CA-N needs 60 atoms.

Under same number of atoms, CA-E 

outperforms CA-N by about 7%.

CA-E-50 vs. CA-N-100

Reduce about 67% parameters (Memory ↓)

Reduce about 87% inference time (Power ↓)

Reduce about 76% training time (Power ↓)

Simulation Results (1/3)

Different Dictionary Size

Model # Parameters Training Time (s) Inference Time (ms) Accuracy (%)

CA-N (100) 13k 452.56 26.94 89.24 ± 0.520

CA-E (50) 4.25k 107.15 3.50 90.05 ± 0.256
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Simulation Results (2/3)

Different Data Set Size

CA-E is more immune to limited data challenge (ex. 𝑁𝑟 ≤ 0.5)

SVM and DNN dramatically drops below 80%

CA still maintain the performance

CA-E outperforms CA-N in 7% margin when the number of atoms is the same.
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Simulation Results (3/3)

Different Compressed Ratio

CA-E can achieve about 90% accuracy under all compressed ratios

CA-N requires 100 atoms to achieve same level of performance

SVM and DNN have only about 80%

CA-E is robust and address the entailed problems of variation of 

compress ratio
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Conclusion

We propose an eigenspace-aided compressed analysis for ECG 

telemonitoring, using

PCA to mitigate the influence of sensing matrix and reduce the dimension

TDDL to learn predictive sparse coding at eigenspace.

The proposed eigenspace-aided compressed analysis achieves

Low complexity

High generalization

High stability of different compressed ratios
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Experimental Setting

ECG signals were recorded from the intensive care unit (ICU) of stroke 

in National Taiwan University Hospital (NTUH)

231 normal records and 58 AF records (labeled by doctors)

Sample Frequency: 512 Hz

Each record randomly sample 2250 seconds

1250 for training

1000 for testing

CS setting

Entries of sensing matrix: Bernoulli (0.5)

Simulation Environment

Measured on Intel i5-4200M CPU @ 2.5 GHz

Using Python3
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Analysis of CA-N

We need to increase the number of atoms in dictionary to compensate 

the performance degrade

Figures below also present the sparse codings in original domain as 

comparison group.

𝐱 𝚽 𝚵 = 𝚽𝐃 𝐖
ො𝐱 𝛂
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Comparison of CA-E and CA-N

CA-E-50 vs. CA-N-100

Reduce about 67% parameters

Reduce about 76% training time,

Reduce about 87% inference time

Smaller performance variance

The bottleneck of training and inference time lies in FISTA

Far smaller classifier with faster 

training and inference time

Model # Parameters
Training Time (s) Inference Time (ms)

Accuracy (%)
Total FISTA Total FISTA # Iter 1 Iter

CA-N

(d=100)

𝑀 × 𝑑 + 𝑑 × 𝑁𝑐
(13k)

452.56 306.33 26.94 26.94 35.5 0.759
89.24

± 0.520

CA-E

(d=50)

𝑟 × 𝑑 + 𝑑 × 𝑁𝑐
(4.25k)

107.15 61.59 3.50 3.49 15.2 0.229
90.05

± 0.256

𝑀 = 128, 𝑟 = 83 and 𝑁r = 0.6
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The bottleneck in FISTA is 𝛁α𝑓 operation

𝛁α𝑓 = 𝛁𝜶
𝟏

𝟐
𝐱 − 𝐃𝛂 2

2 = 𝐃T𝐃𝛂 − 𝐃T𝐱 → 𝑂(𝑑2)

Above order matches the following table

CA-E accelerates FISTA by

Cut off the complexity of each iteration

Reducing the number of iteration

Detailed Timing Analysis

Model
Training Time (s) Inference Time (ms)

Total FISTA Total FISTA # Iter 1 Iter

CA-N

(d=100)
452.56 306.33 26.94 26.94 35.5 0.759

CA-E

(d=50)
107.15 61.59 3.50 3.49 15.2 0.229
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