

Graduate Institute of Electronics Engineering, NTU

Low-Complexity Compressed Analysis in Eigenspace with Limited Labeled Data for Real-Time Electrocardiography Telemonitoring

Kai-Chieh Hsu, Bo-Hong Cho, Ching-Yao Chou and An-Yeu (Andy) Wu

National Taiwan University

ECG Telemonitoring with Edge Computing

Mobile Telemedicine with Wireless Body Area Network (WBAN) [1]

- Patient-centered health-care
- Ubiquitous health-care
- ECG Telemonitoring [2], [3]
 - Record the electrical activity of the heart
 - Standard practice in hospitals for diagnoses
- Edge Computing [4]
 - bandwidth cost saving
 - battery life constraint
 - Iatency requirement

Edge Computing under Existing IoT Systems

Compressed Sensing for ECG Telemonitoring

Problems of Digital Wavelet Transform (DWT)

- High bandwidth incompatible to ADC (Nyquist sample rate)
- High Computational Complexity (Compression)

Compressed sensing (CS) combines sampling and compressing

Reduce cost and latency in sampling

CS-based sensors achieves a 37% node lifetime extension [2]

AF: Atrial Fibrillation

Compressed Analysis for ECG Telemonitoring

- Reconstructed Analysis (RA)
 - High computational complexity because of CS reconstruction algorithms
 - Inappropriate at edge devices.

- Compressed Analysis (CA)
 - Reduce power (classification on compressed signals), suitable at edge devices
 - Reduce the bandwidth requirement (only transmitting AF signals)

Naïve CA (CA-N)

- Combining CS with Task-Driven Dictionary Learning (TDDL)
 - What is TDDL [5]
 - > Learning a dictionary (**D**) to provide predictive sparse coding (α) at given data set
 - \succ Learning a classifier (W) to classify by the sparse coding α
 - Why we choose TDDL?
 - >Low Complexity \rightarrow Overcome battery constraint and bandwidth scarcity
 - > High Generalization \rightarrow Limited label of ECG dataset
- The on-line inference mode of CA-N
 - D and W learned on original data (X)
 - Accuracy degrades, needing double parameters to reach same performance on original data

Contribution of Proposed Scheme (1/2)

 Low-Complexity (overcame battery and bandwidth requirement)
 Our proposed Eigenspace-aided Compressed Analysis (CA-E) vs Naïve Compressed Analysis (CA-N)

Model # Parameters		Training Time (s) Inference Time (ms)		Accuracy (%)
CA-N 13k		452.56	26.94	89.24 ± 0.520
CA-E (Our proposed)	4.25k	107.15	3.50	90.05 ± 0.256

♦ Reduce about 67% parameters (Memory ↓)

- ♦ Reduce about 87% inference time (Power ↓)
- ♦ Reduce about 76% training time (Power ↓)

Contribution of Proposed Scheme (2/2)

High-Stability

- CA-E outperforms DNN and SVM by over 10% when the amount of data is halved. (Overcame limited label of ECG dataset)
- CA-E reaches about 90% under all compressed ratio (Stable under all compressed ratio)

Eigenspace-Aided CA (Training)

◆ Principal Component Analysis (PCA)
 ◆ Record mean vector (μ) of dataset (X)
 ◆ Learn eigenspace (Ψ ∈ ℝ^{N×r}) of X
 ◆ Transpose to eigenspace by T = Ψ^T(X-μ)

TDDL to learn D and W on T

Stage I. Initialize

Dictionary: online dictionary learning (ODL) [6]

Weight: square / logistic loss

Stage II. Co-optimize D and W with labels

- > Alternates between A and D, W
- > Update dictionary with back propagation rule

Sparse coding plays an important role in both stage.

$$\boldsymbol{\alpha}_{\mathbf{D}} \triangleq \underset{\boldsymbol{\alpha} \in \mathbb{R}^{d}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{x} - \mathbf{D}\boldsymbol{\alpha}\|_{2}^{2} + \lambda \|\boldsymbol{\alpha}\|_{1}$$

Eigenspace-Aided CA (Inference)

Eigenspace Transform

*Compressed sensing signal is transmitted with known sensing matrix (Φ), the decoding data is obtained by

$$\mathbf{s} = (\mathbf{\Phi} \Psi)^+ (\hat{\mathbf{x}} - \mathbf{\Phi} \mu) = \mathbf{\Theta}^+ (\hat{\mathbf{x}} - \mathbf{\Phi} \mu)$$

♦()⁺: pseudo-inverse

 \bullet The decoding vector (s) then pass through TDDL-based classifier

♦ Get sparse coding $\alpha(\mathbf{s}, \mathbf{D})$ ♦ argmin $\frac{1}{2} \|\mathbf{x} - \mathbf{D}\alpha\|_2^2 + \lambda \|\alpha\|_1$

Scheme Development (1/2)

Scheme Development (2/2)

Compressed Analysis

Simulation Results (1/3) Different Dictionary Size

- Accuracy vs Dictionary Size
 - To surpass DNN & SVM (~85%), CA-E needs 30 atoms, but CA-N needs 60 atoms.
 - Under same number of atoms, CA-E outperforms CA-N by about 7%.
- ♦ CA-E-50 vs. CA-N-100
 - ♦ Reduce about 67% parameters (Memory ↓)
 - ♦ Reduce about 87% inference time (Power ↓)
 - ♦ Reduce about 76% training time (Power ↓)

Model	# Parameters	Training Time (s)	Inference Time (ms)	Accuracy (%)
CA-N (100) 13k		452.56	26.94	89.24 ± 0.520
CA-E (50) 4.25k		107.15	3.50	90.05 ± 0.256

Simulation Results (2/3) Different Data Set Size

- ♦ CA-E is **more immune** to limited data challenge (ex. $N_r \le 0.5$)
 - SVM and DNN dramatically drops below 80%
 - CA still maintain the performance

♦ CA-E outperforms CA-N in 7% margin when the number of atoms is the same.

Simulation Results (3/3) Different Compressed Ratio

CA-E can achieve about 90% accuracy under all compressed ratios

- CA-N requires 100 atoms to achieve same level of performance
- SVM and DNN have only about 80%
- CA-E is robust and address the entailed problems of variation of compress ratio

Conclusion

- We propose an eigenspace-aided compressed analysis for ECG telemonitoring, using
 - PCA to mitigate the influence of sensing matrix and reduce the dimension
 - TDDL to learn predictive sparse coding at eigenspace.
- The proposed eigenspace-aided compressed analysis achieves
 - Low complexity
 - High generalization
 - High stability of different compressed ratios

Reference

- [1] F. Touati and R. Tabish, "U-healthcare system: state-of-the-art review and challenges," in *Journal of Medical Systems*, pp.120, May 2013.
- [2] H. Mamaghanian, N. Khaled, D. Atienza and P. Vandergheynst, "Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes," in *IEEE Trans. Biomed. Eng.*, vol. 58, no. 9, pp. 2456-2466, Sep. 2011.
- [3] M. Y. Tsai, C. Y. Chou and A. Y. Wu, "Robust compressed analysis using subspace-based dictionary for ECG telemonitoring systems," in *Proc. IEEE Int. Workshop on Signal Process. Syst.*, Oct. 2017
- [4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge Computing: Vision and Challenges," in *IEEE Internet Things J.*, vol. 3, no. 5, pp. 637-646, Oct. 2016.
- [5] J. Mairal, F. Bach and J. Ponce, "Task-driven dictionary learning," in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 34, no. 4, pp. 791-804, April 2012.
- [6] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. "Online dictionary learning for sparse coding," ICML, 2009.

Graduate Institute of Electronics Engineering, NTU

Thanks for your attention

Q&A

Graduate Institute of Electronics Engineering, NTU

Backup

Experimental Setting

- ECG signals were recorded from the intensive care unit (ICU) of stroke in National Taiwan University Hospital (NTUH)
 - 231 normal records and 58 AF records (labeled by doctors)
 - Sample Frequency: 512 Hz
 - Each record randomly sample 2250 seconds
 - >1250 for training
 - ≻1000 for testing

CS setting

Entries of sensing matrix: Bernoulli (0.5)

- Simulation Environment
 - Measured on Intel i5-4200M CPU @ 2.5 GHz

Using Python3

TABLE I: Parameters setting for learning models

CA-E and CA-N					
ℓ_1 -Constraint (λ_1)	[0.2, 0.5, 0.8]				
Regularization (ν)	$[10^{-5}, 10^{-4}]$				
SVM					
Kernel	Radial Basis Function				
Gamma (γ)	[0.08, 0.10, 0.12, 0.15, 0.2]				
$\operatorname{Cost}(C)$	[500, 800, 1000]				
DNN					
	[(16,32), (32,64), (64,128),				
Hidden Layer Dimension	(128,256), (8,16,32),				
	(16,32,64), (32,64,128)]				

Analysis of CA-N

We need to increase the number of atoms in dictionary to compensate the performance degrade

Figures below also present the sparse codings in original domain as comparison group.

Comparison of CA-E and CA-N

♦ CA-E-50 vs. CA-N-100

Reduce about 67% parameters

Reduce about 76% training time,

Reduce about 87% inference time

Smaller performance variance

Far smaller classifier with faster training and inference time

The bottleneck of training and inference time lies in FISTA

Model	# Parameters	Training Time (s)		Inference Time (ms)				A
		Total	FISTA	Total	FISTA	# Iter	1 Iter	Accuracy (%)
CA-N (d=100)	$M \times d + d \times N_c$ (13k)	452.56	306.33	26.94	26.94	35.5	0.759	89.24 ± 0.520
CA-E (d=50)	$r \times d + d \times N_c$ (4.25k)	107.15	61.59	3.50	3.49	15.2	0.229	90.05 ± 0.256

 $M = 128, r = 83 \text{ and } N_{\rm r} = 0.6$

Detailed Timing Analysis

Model	Training Time (s)		Inference Time (ms)			
	Total	FISTA	Total	FISTA	# Iter	1 Iter
CA-N (d=100)	452.56	306.33	26.94	26.94	35.5	0.759
CA-E (d=50)	107.15	61.59	3.50	3.49	15.2	0.229

CA-E (d=50) CA-N (d=100)

50

40

Reference

- [1] I. Daubechies, M. Defrise, and C. D. Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," *Commun. Pure Appl. Math.*, vol. 57, pp. 1413–1457, 2004.
- [2] A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems", *SIAM Journal on Imaging Sciences*, vol. 2, pp. 183–202, 2009.